Surface induced self-organization of comb-like macromolecules

نویسندگان

  • Konstantin I Popov
  • Vladimir V Palyulin
  • Martin Möller
  • Alexei R Khokhlov
  • Igor I Potemkin
چکیده

We present a review of the theoretical and experimental evidence for the peculiar properties of comb copolymers, demonstrating the uniqueness of these materials among other polymer architectures. These special properties include an increase in stiffness upon increasing side-chain length, the spontaneous curvature of adsorbed combs, rod-globule transition, and specific intramolecular self-assembly. We also propose a theory of chemically heterogeneous surface nanopattern formation in ultrathin films of comblike macromolecules containing two different types (A and B) of incompatible side chains (so-called binary combs). Side chains of the binary combs are strongly adsorbed on a surface and segregated with respect to the backbone. The thickness of surface domains formed by the B side chains is controlled by the interaction with the substrate. We predict the stability of direct and inverse disc-, torus- and stripelike nanostructures. Phase diagrams of the film are constructed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of an ultra-high-molecular-weight comb block copolymer at the air–water interface

The self-assembly of a newly synthesized, amphiphilic comb block copolymer (CBCP) at the air–water interface was systematically explored using the Langmuir–Blodgett (LB) technique. The CBCP had an ultra-high molecular weight (Mw 1⁄4 510 10 g mol ) with polystyrene arms grafted along one block of long hydrophilic backbone. At the air–water interface, the CBCP molecules spontaneously assembled in...

متن کامل

Investigating the Mechanism of Action of SARS-CoV-2 Virus for Drug Designing: A Review

Coronavirus Disease 2019 (COVID-19) is a viral pneumonia emerged in December 2019 in Wuhan, China. Its cause is a new virus from the coronavirus family scientifically named Coronavirus Acute Respiratory Syndrome 2 (SARS-CoV-2). In this review study, articles published in English until March 23, 2020 on new coronavirus infection were reviewed. These articles are obtained by searching in PubMed, ...

متن کامل

Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide.

Part 1 of these studies described poly(methyl methacrylate-r-polyoxyethylene methacrylate) P(MMA-r-POEM) comb polymers that present Arg-Gly-Asp (RGD) peptides at a surface in nanoscale clusters on a protein-resistant background for control of cell adhesion. Here in part 2, we examine surface segregation of these peptide-modified and unmodified comb polymers blended with polylactide (PLA) as a s...

متن کامل

A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly.

Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critic...

متن کامل

Nanomanufacturing via fast laser-induced self-organization in thin metal films

Robust nanomanufacturing methodologies are crucial towards realizing simple and cost-effective products. Here we discuss nanofabrication of ordered metal nanoparticles through pulsed-laser-induced self-organization. When ultrathin metal films are exposed to short laser pulses, spontaneous pattern formation results under appropriate conditions. Under uniform laser irradiation two competing modes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011